

Exercise 6 (Steam Generator Boiler)

From a steam generator (boiler) the following composition of combustion products is obtained on a wet basis:

CO ₂	5.50 %
CO	2.70 %
O ₂ , N ₂ , H ₂ O y H ₂	other

Knowing that the fuel is (mass composition) methane (87%) and ethane (13%) and that the combustion products at its outlet are at 600° C.

The water enters at 25°C and 11.00 MPa, leaving at 490°C and 10.88 MPa

Get:

- a) Influence of the coefficient of excess air on the adiabatic temperature of the flame
- b) The air / combustion products molar ratio
- c) The mass ratio of air / combustion products
- d) Excess air coefficient
- e) Energy balance
- f) Exergy balance
- g) Propose actions to improve the process

FUEL selection	Normal conditions
Fuel composition 🔹 🗸 Gravimetric	000 debre (DIN 1242-1000)
Hydrocarbon mixture 🕨 Volumetric	[0°C, 1atm (DIN 1343:1990)
Jet fuel	T. Dead State D.
Unknown fuel CxHy	
Empirical formula	

Combustion boilers are widely used to generate steam for industrial applications and power generation. While all kinds of energy sources - fossil fuels, biomass, nuclear and solar energy, electricity - can be used to generate heat and steam, the scope of this brief is limited to combustion boilers using fossil fuels. Boilers can be grouped into two broad categories: water-tube boilers and fire-tube boilers. In the water-tube boilers, tubes containing water are heated by combustion gases that flow outside the tubes, while in the firetube boilers hot combustion gases flow inside the tubes and water flows outside.

Boilers account for a significant share of industrial energy consumption and are the key components in power generation and industrial plants.

	P _{vapor} (T [*] fuel)	Inerts:)% □	Reset FUEL	2 ÷
<mark>Gas T≻Tc</mark>	kPa	Mass % 87.0000	CH ₄	Methane	-
Gas T <tc< th=""><th>4190.33</th><th>13.0000 ÷</th><th>C₂H₆</th><th>Ethane</th><th>•</th></tc<>	4190.33	13.0000 ÷	C ₂ H ₆	Ethane	•
	Tota	l: 100.0000			

The peak adiabatic flame temperature occurs at around $\lambda = 1$ in an ideally insulated combustion chamber. Figure is a typical graph of flame temperature for a natural gas–air mixture. As percent combustion air increases, that is, as we deviate from the stoichiometric condition, some of the heat generated is used to heat up the excess air. As a result, the flame temperature will drop. By the same token, it is important to note that increasing the fuel at stoichiometric conditions will reduce the flame temperature as is indicated by the left-hand side of the temperature peak in Figure. Therefore, under controlled conditions, flame temperature can be a useful measure of air-fuel ratio, that is, how far we deviate from stoichiometric conditions and whether the combustion is fuel-lean or fuel-rich.

Water gas shift reaction (mass balance)	×.	 At products temperature
Chemical dissociation hypothesis		At adiabatic temperature
Model Substances (oxidizer and combustion products)	×	At theoretical adiabatic temperature
Combustion Products	۲	User defined

Water gas shift is a well-known reaction in which carbon monoxide reacts with steam to give carbon dioxide and hydrogen, representing an important step in the industrial production of hydrogen. Here, water and carbon monoxide molecules react to generate hydrogen and carbon dioxide. From the thermodynamics aspect, pressure does not have an impact, whereas low-temperature conditions are suitable for high hydrogen selectivity because of the exothermic nature of the WGSR reaction.

PRODUCTS 2 🗄 🗵	Hydrogen in the products Image: There is hydrogen
Mole ratio %	₩ Water gas shift reaction (Products T ^a)
CO2 5.50000	CO + H ₂ O 😤 CO ₂ + H ₂ Equilibrium temperature
CO 2.70000 ÷	K _p = 4.58486 600.00 ℃
	Molar ratio H2/CO

FUEL-AIR gravimetric and volumetric analysis

? ×

			Molar ratio, x _i (%)	Weight molecular, MW;	x _i MW _i	mf; (%)
	O ₂		19.2736	32.0000	6.1676	22.1197
A.	N 2		72.5054	28.0135	20.3113	72.8450
R	Ar		0.0000	39.9480	0.0000	0.0000
	CO ₂		0.0000	44.0098	0.0000	0.0000
	H ₂ O	(Air HR	0.0000	18.0153	0.0000	0.0000
F	CH ₄		7.6140	16.0428	1.2215	4.3808
U F	C_2H_6		0.6070	30.0690	0.1825	0.6545
L			100.0000		27.8829 (kg/kmol)	100.0000

FLUE GAS (Combustion Products)			🔽 On wet basis 🔲 On dry basis	
	mol/mol fuel	🗌 kg/kg fuel	Mole %	Mass %
CO2	0.720256	1.856043	5.5000	9.3461
CO	0.353580	0.579902	2.7000	2.9201
H ₂ O	0.637957	0.672952	4.8715	3.3886
N ₂	8.819498	14.466474	67.3470	72.8456
O ₂	1.128399	2.114287	8.6166	10.6464
He				
H ₂	1.435880	0.169488	10.9646	0.8535
Ar				
unburned				
TOTAL	13.0956	19.8591	100.00 %	(100.00) %

<u>Dew Point (</u> and P _{sat})	□ 100%	mol/mol fuel
32.41 °C H₂O (liquid)	%	kg/kg fuel
4.87 kPa		

Properties of the AIR Density (Normal conditions) Density (Entry to the chamber) Dry air Wet air Dry air Wet air kg/Nm³ kg/m³ 1.2931 1.1688) Mass flow rate Dry air Wet air kg/s mol air/mol products (stq) kg air/kg products (stq) (Dry basis) (Dry basis) 1.1150 1.0752 mol air/mol products (actual) kg air/kg products (actual) (Dry basis) (Dry basis) 0.8962) 0.9830)

Products Temperature	
	600.00 °C
Adiabatic Flame	<u>Temperature</u>
For λ = 1.1107 (Actual)	964.07 °C
For λ = 1.0 (max) (Theoretical)	2060.50 °C (25°C, 1atm)

Boiler Efficiency		
	(<u>19.40</u> %	
		C HHV
	Stack heat losses	i
	683.91 kJ/mol fuel	
	80.60 % (of the calorifi	c value of the fuel)

Combustion Efficiency	Reference state: To=25 °C, Po=100 kPa	
$\eta_{\text{comb}} = \frac{Q_f(T_0)}{LHV}$	47.28 % i (Incomplete Combustion Loss)	
	(100% for complete combustion)	
	Qf(To) 401.211 kJ/mol fuel	

Combustion is generated with the presence of a large number of unburned.

Results	i		
	STEAM GENERATOR		
	Useful heat	164.58 kJ/mol fuel	
	Thermal efficiency	19.40 % i	
	Exhaust products loss	683.91 kJ/mol fuel	
	Mass ratio (fuel consumpt	ion) luid 0.0281 kg fuel/kg fluid	
	Heat exchanger effectiveness	<u>38.77</u> %	

The main reason for the low efficiency, both thermal and exergetic, is the low temperature reached by the combustion products (the combustion chamber working adiabatically), 964° C. The temperature margin to generate useful heat is small ($964-600 = 364^{\circ}$ C), requiring 0.0281 kg fuel / kg water..

The temperature of 600°C is the exit temperature of the combustion fumes to the environment, it does not seem very appropriate to consider it as the equilibrium temperature of the combustion process, this temperature should be the adiabatic temperature of the flame or close to it.

We redo the calculations for an equilibrium temperature of 1500°C (it will be verified that the adiabatic temperature is 1525°C), verifying that it is close to the adiabatic temperature of the flame, without exceeding it.

Excess Air Coefficient		Products Temperature
	1.1699	600.00 °C
_		Adiabatic Flame Temperature
Equivalence Ratio (Relative Ratio, F _R)	0.8548	For λ = 1.1699 (1525.98) °C (Actual)
		For $\lambda = 1.0$ (max) (Theoretical) °C (25°C, 1atm)

Direct method		
Combustion Efficiency	Reference state: To=25 °C, Po=100 kPa	i
$\eta_{\text{comb}} = \frac{Q_f(T_0)}{LHV}$	81.21 % i (Incomplete Combustion Loss) (100% for complete combustion)	
	Qf(T ₀) 689.089 kJ/mol fuel	

The unburned decrease drastically.

STEAM GENERATOR	
Useful heat	448.18 kJ/mol fuel
Thermal efficiency	<u>52.82</u> %
Exhaust products loss	400.32 kJ/mol fuel
Mass ratio (fuel consump	tion) fluid 0.0103 kg fuel/kg fluid
Heat exchanger effectiveness	61.69 % i

Fuel consumption decreases.

-Fuel chemical	exergy
	2.
b _{fuel}	882.44 kJ/mol fuel
b _{fuel} /LHV	1.0400 i
	About
Chemica	al exergy (flue gas)
	168.659 kJ/mol fuel

Exergy efficiency
Steam generator
? <u>4.83</u> % i
Useful exergy 42.61 kJ/mol fuel
Compressor
?% 🚺
Turbine HP Turbine LP
? %? 1
Turbine MP
%

Irreversibilities	
Combustion Chamber	
262.30 kJ/mol fuel	
Heat Exchanger	
302.02 kJ/mol fuel	
Stack losses	
276.83 kJ/mol fuel	
Exergy Destroyed (total) 841.15 kJ/mol fuel	

If we decrease the expulsion temperature of the gases into the atmosphere:

Equilibrium temperature 1500 ℃	100.00 kPa
STEAM GENERATOR	
Useful heat	619.02 kJ/mol fuel
Thermal efficiency	72.95 % i
Exhaust products loss	229.48 kJ/mol fuel
Mass ratio (fuel consump 0.4369 Mol fuel/kg	tion) fluid 0.0075 kg fuel/kg fluid
Heat exchanger effectiveness	88.34) % i

Fuel consumption continues decreasing.

It can be seen that the efficiencies, thermal and exergy, continue to increase. As expected, the energy and exergetic losses due to the chimney fumes expelled into the environment are drastically reduced. This increases the thermal performance considerably. However, the irreversibilities in the heat exchanger

increase (from 34% to 43%), as the thermal jump in it increases (1500-200 = 1300°C), which causes that the exergetic efficiency hardly increases.

If we now use the heat of the combustion gases to generate water vapor at 490 °C, we are making better use of the energy put into play and the exergetic efficiency should increase:

In this case, the energy analysis shows us that to maintain thermal efficiency it is necessary to increase fuel consumption.

-Fuel chemical	l exergy	
b _{fuel}	882.44 kJ/mol fuel i	
b _{fuel} /LHV	1.0400 i	
	About	
Chemica	al exergy (flue gas)	
	168.659 kJ/mol fuel	

Irreversibilities	
Combustion Chamber	
262.30 kJ/mol fuel	
Heat Exchanger	
151 49 kJ/mol fuel	
Stack losses	
276.83 kJ/mol fuel	
Every Destroyed (total)	

